Skip to main content

Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF

Catalog # 10570-CV | R&D Systems, Inc. a Bio-Techne Brand
Sf21 Insect Cell Expressed
Catalog #
Availability
Size / Price
Qty
Loading...
10570-CV-100

Key Product Details

Source

Sf 21 (baculovirus)

Accession #

Conjugate

Unconjugated

Applications

Bioactivity

Product Specifications

Source

Spodoptera frugiperda, Sf 21 (baculovirus)-derived sars-cov Spike S1 Subunit protein
Ser14-Leu666, with a C-terminal 6-His tag

Purity

>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Endotoxin Level

<0.10 EU per 1 μg of the protein by the LAL method.

N-terminal Sequence Analysis

Ser14

Predicted Molecular Mass

74 kDa

SDS-PAGE

85-98 kDa, under reducing conditions

Activity

Measured by its binding ability in a functional ELISA with Recombinant Human ACE-2 His-tag (Catalog # 933-ZN).

Scientific Data Images for Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF

Recombinant SARS-CoV Spike S1 Subunit His-tag Protein Binding Activity

Recombinant SARS-CoV Spike S1 Subunit His-tag Protein Binding Activity

Recombinant SARS-CoV Spike S1 Subunit His-tag (Catalog # 10570-CV) binds Recombinant Human ACE-2 His-tag (933-ZN) in a functional ELISA.
Recombinant SARS-CoV Spike S1 Subunit His-tag Protein SDS-PAGE

Recombinant SARS-CoV Spike S1 Subunit His-tag Protein SDS-PAGE

2 μg/lane of Recombinant SARS-CoV Spike S1 Subunit His-tag Protein (Catalog # 10570-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 85-98 kDa and 75-85 kDa, respectively.
Flow cytometry scatter plot shows SARS Spike S1 Domain protein binds to ACE-2 expressing HEK293 cells

Detection of SARS-CoV Spike S1 Protein bound to ACE-2 expressing cells by flow cytometry

In a functional flow cytometry test, (A) Recombinant SARS-CoV Spike S1 Subunit His-tag Protein (Catalog # 10570-CV) binds to HEK293 human embryonic kidney cell line transfected with recombinant human ACE-2 and EGFP. Ligand binding was detected by staining cells with APC-conjugated anti-His Monoclonal Antibody (IC050A), which does not stain the cells in the absence of recombinant protein (B).

Formulation, Preparation and Storage

10570-CV
Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose.
Reconstitution Reconstitute at 500 μg/mL in PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: Spike S1 Subunit

SARS-CoV was discovered in association with cases of severe acute respiratory syndrome (SARS) that infected more than 8,000 persons with over 900 fatalities worldwide in 2002-2003 (1). It belongs to a family of viruses known as coronaviruses that also include MERS and SARS-Cov2 that causes the global pandemic coronavirus disease 2019 (Covid-19). Coronavirus is commonly comprised of four structural proteins: Spike protein(S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N) (1). SARS-CoV S Protein is a type-I trimerized membrane glycoprotein that mediates membrane fusion and viral entry. As with most coronaviruses, proteolytic cleavage of the S protein into two distinct peptides, S1 and S2 subunits, is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor while the S2 subunit is involved with cell fusion (2-4). A metallopeptidase, angiotensin-converting enzyme 2 (ACE-2), has been identified as a functional receptor for SARS-CoV through interaction with a receptor binding domain (RBD) located at the C-terminus of S1 subunit (5, 6). Based on amino acid (aa) sequence homology, the S1 subunit of SARS-Cov shares 65% and 24% homology with S1 subunit of SARS-CoV2 and MERS, respectively. Before binding to the ACE-2 receptor, structural analysis of the S1 trimer shows that only one of the three RBD domains in the trimeric structure is in the "up" conformation. This is an unstable and transient state that passes between trimeric subunits but is nevertheless an exposed state to be targeted for neutralizing antibody therapy (7). Antibodies to S protein especially the S1 subunit of SARS-CoV have been shown to inhibit interaction with the ACE-2 receptor, confirming S1 subunit as an attractive target for vaccinations or antiviral therapy (8).

References

  1. Rota, P.A. et al. (2003) Science 300:1394.
  2. Bosch, B.J. et al. (2003). J. Virol. 77:8801.
  3. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. USA 106:5871.
  4. Millet, J.K. and G. R. Whittaker (2015) Virus Res. 202:120.
  5. Li, W. et al. (2003) Nature 426:450.
  6. Wong, S.K. et al. (2004) J. Biol. Chem. 279:3197.
  7. Ortega, J.T. et al. (2020) EXCLI J. 19:410.
  8. Du, L. el al. (2009) Nat. Rev. Microbiol. 7:226.

Long Name

Spike Protein, S1 Subunit

UniProt

Product Documents for Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF

For research use only

Customer Reviews for Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF (1)

5 out of 5
1 customer rating
5 stars
100%
4 stars
0%
3 stars
0%
2 stars
0%
1 star
0%

Customer Images


Showing  1 - 1 of 1 review Showing All
Filter By:
  • Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF
    Name: Anonymous
    Application: Binding assay/Protein-protein interaction
    Verified Customer | Posted 01/17/2021
    Recombinant SARS-CoV Spike S1 Subunit His-tag Protein, CF 10570-CV

There are no reviews that match your criteria.

Showing  1 - 1 of 1 review Showing All

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

÷
=
Loading...
Setting the standard in quality research reagents