Skip to main content

Recombinant SARS-CoV Spike RBD Fc Chimera Protein, CF

Catalog # 10559-CV | R&D Systems, Inc. a Bio-Techne Brand
Mammalian CHO Cell Expressed
Catalog #
Availability
Size / Price
Qty
Loading...
10559-CV-100

Key Product Details

Accession #

Source

CHO

Structure / Form

Disulfide-linked homodimer

Conjugate

Unconjugated

Applications

Bioactivity

Product Specifications

Source

Chinese Hamster Ovary cell line, CHO-derived sars-cov Spike RBD protein
SARS-CoV Spike RBD
(Arg306-Phe527)
Accession # NP_0828851.1
IEGRMD Human IgG1
(Pro100-Lys330)
N-terminus C-terminus

Purity

>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Endotoxin Level

<0.10 EU per 1 μg of the protein by the LAL method.

N-terminal Sequence Analysis

Arg306

Predicted Molecular Mass

52 kDa

SDS-PAGE

61-67 kDa, under reducing conditions

Activity

Measured by its binding ability in a functional ELISA with Recombinant Human ACE-2 His-tag (Catalog # 933-ZN).

Scientific Data Images for Recombinant SARS-CoV Spike RBD Fc Chimera Protein, CF

Recombinant SARS-CoV Spike RBD Fc Chimera Protein Binding Activity

Recombinant SARS-CoV Spike RBD Fc Chimera Protein Binding Activity

Recombinant SARS-CoV Spike RBD Fc Chimera (Catalog # 10559-CV) binds Recombinant Human ACE-2 His-tag (933-ZN) in a functional ELISA.
Recombinant SARS-CoV Spike RBD Fc Chimera Protein SDS-PAGE

Recombinant SARS-CoV Spike RBD Fc Chimera Protein SDS-PAGE

2 μg/lane of Recombinant SARS-CoV Spike RBD Fc Chimera Protein (Catalog # 10559-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 61-67 kDa and 120-130 kDa, respectively.

Formulation, Preparation and Storage

10559-CV
Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose.
Reconstitution Reconstitute at 500 μg/mL in PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Background: Spike RBD

SARS-CoV was discovered in association with cases of severe acute respiratory syndrome (SARS) that infected more than 8,000 persons with over 900 fatalities worldwide in 2002-2003 (1). It belongs to a family of viruses known as coronaviruses that also include MERS and SARS-Cov2 that causes the global pandemic coronavirus disease 2019 (Covid-19). Coronavirus is commonly comprised of four structural proteins: Spike protein(S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N) (1). SARS-CoV S Protein is a type-I trimerized membrane glycoprotein that mediates membrane fusion and viral entry. As with most coronaviruses, proteolytic cleavage of the S protein into two distinct peptides, S1 and S2 subunits, is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor while the S2 subunit is involved with cell fusion (2-4). A metallopeptidase, angiotensin-converting enzyme 2 (ACE-2), has been identified as a functional receptor for SARS-CoV through interaction with a receptor binding domain (RBD) located at the C-terminus of S1 subunit (5, 6). Based on amino acid (aa) sequence homology, the RBD domain of SARS-Cov shares 73% and 24% homology with RBD domain of SARS-CoV2 and MERS, respectively. Before binding to the ACE-2 receptor, structural analysis of the S1 trimer shows that only one of the three RBD domains in the trimeric structure is in the "up" conformation. This is an unstable and transient state that passes between trimeric subunits but is nevertheless an exposed state to be targeted for neutralizing antibody therapy (7). Antibodies to S protein especially the RBD region of SARS-CoV have been shown to inhibit interaction with the ACE-2 receptor, confirming RBD as an attractive target for vaccinations or antiviral therapy (8).

References

  1. Rota, P.A. et al. (2003) Science 300:1394.
  2. Bosch, B.J. et al. (2003). J. Virol. 77:8801.
  3. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. USA 106:5871.
  4. Millet, J.K. and G. R. Whittaker (2015) Virus Res. 202:120.
  5. Li, W. et al. (2003) Nature 426:450.
  6. Wong, S.K. et al. (2004) J. Biol. Chem. 279:3197.
  7. Ortega, J.T. et al. (2020) EXCLI J. 19:410.
  8. Du, L. el al. (2009) Nat. Rev. Microbiol. 7:226.

Long Name

Spike Receptor Binding Domain

Alternate Names

Spike RBD

Entrez Gene IDs

3200426 (HCoV-HKU1); 14254594 (MERS-CoV); 1489668 (SARS-CoV); 43740568 (SARS-CoV-2)

Gene Symbol

S

UniProt

Product Documents for Recombinant SARS-CoV Spike RBD Fc Chimera Protein, CF

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Recombinant SARS-CoV Spike RBD Fc Chimera Protein, CF

For research use only

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

÷
=
Loading...
Setting the standard in quality research reagents