Cultrex Reduced Growth Factor Basement Membrane Extract, PathClear Best Seller
Catalog # 3433-010-01 | R&D Systems, Inc. a Bio-Techne Brand
Key Product Details
Features: | Cultrex Reduced Growth Factor Basement Membrane Extract (RGF BME) is an extracellular matrix hydrogel that has been used extensively in general cell culture applications to study cell attachment, proliferation, and invasion. It is ideal for cultures that require limited reduced growth factor conditions. |
Key Benefits: |
|
Citations for Cultrex Reduced Growth Factor Basement Membrane Extract, PathClear (41)
Citations are publications that use Bio-Techne products. Selected citations for Cultrex Reduced Growth Factor Basement Membrane Extract, PathClear include:
-
Species: Xenograft
Sample Types: Organoids
Applications: BioassayVall�s-Mart� et al. (2023-06-01), Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma Cell reports
PMID: 37269289 -
Species: Mouse
Sample Types: Whole Cells
Applications: BioassayNwosu et al. (2023-05-17), Uridine-derived ribose fuels glucose-restricted pancreatic cancer Nature
PMID: 37198494 -
Species: Human
Sample Types: Organoid
Applications: BioassayD Centeno et al. (2023-02-27), The Dietary Supplement Taurine Suppresses Ovarian Cancer Growth bioRxiv : the preprint server for biology, 2023-00(0).
PMID: 36909636 -
Species: Transgenic Mouse
Sample Types: In Vivo
Applications: In VivoW Zhang et al. (2023-02-06), Bone metastasis initiation is coupled with bone remodeling through osteogenic differentiation of NG2+ cells Cancer Discovery, 2023-00(0).
PMID: 36287038 -
Species: Human
Sample Types: Transfected Whole Cells
Applications: BioassayMG Zhang et al. (2022-10-10), Early Mechanisms of Chemoresistance in Retinoblastoma Cancers, 2022-114(19).
PMID: 36230889 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayH Iwanishi et al. (2022-09-20), Delayed regression of laser-induced choroidal neovascularization in TNFalpha-null mice Journal of Cellular and Molecular Medicine, 2022-00(0).
PMID: 36127870 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayM Crozier et al. (2022-09-15), Frequently used antiemetic agent dexamethasone enhances the metastatic behaviour of select breast cancer cells PLoS ONE, 2022-017(9):e0274675.
PMID: 36107918 -
Species: Mouse
Sample Types: Whole Cells
Applications: BioassayA Bhuniya et al. (2022-08-15), Tumor activated platelets induce vascular mimicry in mesenchymal stem cells and aid metastasis Cytokine, 2022-0158(0):155998.
PMID: 35981492 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayMM Harper et al. (2022-07-07), Interaction of immune checkpoint PD-1 and chemokine receptor 4 (CXCR4) promotes a malignant phenotype in pancreatic cancer cells PLoS ONE, 2022-017(7):e0270832.
PMID: 35797269 -
Species: Human
Sample Types: Organoid
Applications: BioassayA Krivitsky et al. (2021-12-20), Sulfonated Amphiphilic Poly(alpha)glutamate Amine-A Potential siRNA Nanocarrier for the Treatment of Both Chemo-Sensitive and Chemo-Resistant Glioblastoma Tumors Pharmaceutics, 2021-113(12).
PMID: 34959480 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayMK Zowada et al. (2021-03-04), Functional States in Tumor-Initiating Cell Differentiation in Human Colorectal Cancer Cancers, 2021-013(5).
PMID: 33806447 -
Species: Human
Sample Types: Organoid
L Custers et al. (2021-03-03), Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours Nature Communications, 2021-012(1):1407.
PMID: 33658498 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayMG Muoio et al. (2021-02-04), Activation of the S100A7/RAGE Pathway by IGF-1 Contributes to Angiogenesis in Breast Cancer Cancers, 2021-013(4).
PMID: 33557316 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayM Hýž?alová et al. (2020-09-10), A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype Chemosphere, 2020-0263(0):128126.
PMID: 33297115 -
A Ghosh et al. (2020-05-12), In�Vivo Cell Fate Tracing Provides No Evidence for Mesenchymal to Epithelial Transition in Adult Fallopian Tube and Uterus Cell Rep, 2020-031(6):107631.
PMID: 32402291 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayH Xiang et al. (2020-02-19), Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma Cancer Immunol Res, 2020-00(0).
PMID: 32075803 -
Species: Mouse, Xenograft
Sample Types: Whole Cells
Applications: Bioassay, In VivoSM Syed et al. (2019-12-26), Endometrial Axin2+ Cells Drive Epithelial Homeostasis, Regeneration, and Cancer following Oncogenic Transformation Cell Stem Cell, 2019-126(1):64-80.e13.
PMID: 31883834 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayE Crutcher et al. (2019-11-04), mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome Sci Rep, 2019-19(1):15935.
PMID: 31685878 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayS Bhatia et al. (2019-06-21), Interrogation of Phenotypic Plasticity between Epithelial and Mesenchymal States in Breast Cancer J Clin Med, 2019-08(6).
PMID: 31234417 -
Species: Human
Sample Types: Whole Cells
Applications: BioassayMJ Mao et al. (2019-01-01), Vascular-endothelial response to IDH1 mutant fibrosarcoma secretome and metabolite: implications on cancer microenvironment Am J Cancer Res, 2019-09(1):122-133.
PMID: 30755816 -
Patel R et al. (2017-05-14), Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem, 2017-0142(1):74-88.
PMID: 28397247 -
Sarmento-Cabral A et al. (2017-04-06), Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways. Mol Cancer Res, 2017-015(7):862-874.
PMID: 28385910 -
Willuda J et al. (2017-03-14), Preclinical Antitumor Efficacy of BAY 1129980-a Novel Auristatin-Based Anti-C4.4A (LYPD3) Antibody-Drug Conjugate for the Treatment of Non-Small Cell Lung Cancer. Mol Cancer Ther, 2017-016(5):893-904.
PMID: 28292941 -
Weng J et al. (2017-03-13), Activation of CD137 Signaling Promotes Angiogenesis in Atherosclerosis via Modulating Endothelial Smad1/5-NFATc1 Pathway. J Am Heart Assoc, 2017-06(3).
PMID: 28288971 -
M Shimoda et al. (2017-03-08), Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization Controls Endochondral Ossification through Hyaluronan Metabolism Am. J. Pathol, 2017-00(0).
PMID: 28284715 -
(2016-11-14), Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression Proc. Natl. Acad. Sci. U.S.A., 2016-10(0).
PMID: 27849608 -
Gao Y et al. (2016-10-25), KLF6 Suppresses Metastasis of Clear Cell Renal Cell Carcinoma via Transcriptional Repression of E2F1. Cancer Res, 2016-177(2):330-342.
PMID: 27780824 -
(2016-08-30), Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of the YAP/TAZ transcriptional coactivator WBP2 Cancer Res, 2016-00(0).
PMID: 27578003 -
Mense S et al. (2015-03-31), PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. Sci Signal, 2015-08(370):ra32.
PMID: 25829446 -
Danieli P et al. (2015-03-30), Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med, 2015-04(5):448-58.
PMID: 25824141 -
Berger C et al. (2015-03-03), Effects of ulipristal acetate on human embryo attachment and endometrial cell gene expression in an in vitro co-culture system. Hum Reprod, 2015-030(4):800-11.
PMID: 25740886 -
Zhang L et al. (2015-02-02), The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol, 2015-035(8):1350-62.
PMID: 25645929 -
Kolev V et al. (2014-11-28), PI3K/mTOR dual inhibitor VS-5584 preferentially targets cancer stem cells. Cancer Res, 2014-175(2):446-55.
PMID: 25432176 -
Bittencourt F et al. (2014-08-06), The M33 G protein-coupled receptor encoded by murine cytomegalovirus is dispensable for hematogenous dissemination but is required for growth within the salivary gland. J Virol, 2014-088(20):11811-24.
PMID: 25100846 -
Caceres P et al. (2014-07-09), Vesicle-associated membrane protein 2 (VAMP2) but Not VAMP3 mediates cAMP-stimulated trafficking of the renal Na+-K+-2Cl- co-transporter NKCC2 in thick ascending limbs. J Biol Chem, 2014-0289(34):23951-62.
PMID: 25008321 -
De Francesco E et al. (2014-06-03), GPER mediates activation of HIF1alpha/VEGF signaling by estrogens. Cancer Res, 2014-074(15):4053-64.
PMID: 24894716 -
Trivisonno A et al. (2014-03-31), Harvest of superficial layers of fat with a microcannula and isolation of adipose tissue-derived stromal and vascular cells. Aesthet Surg J, 2014-034(4):601-13.
PMID: 24687265 -
Proescholdt M et al. (2012-10-16), Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro Oncol, 2012-114(11):1357-66.
PMID: 23074198 -
Eiseler T et al. (2012-07-12), Protein kinase D1 mediates anchorage-dependent and -independent growth of tumor cells via the zinc finger transcription factor Snail1. J Biol Chem, 2012-0287(39):32367-80.
PMID: 22791710 -
Li Z et al. (2012-05-01), Combination of an allosteric Akt Inhibitor MK-2206 with etoposide or rapamycin enhances the antitumor growth effect in neuroblastoma. Clin Cancer Res, 2012-018(13):3603-15.
PMID: 22550167 -
Antonelli A et al. (2012-01-25), CLM94, a novel cyclic amide with anti-VEGFR-2 and antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J Clin Endocrinol Metab, 2012-097(4):E528-36.
PMID: 22278419
There are no citations that match your criteria.
Customer Reviews for Cultrex Reduced Growth Factor Basement Membrane Extract, PathClear (8)
Customer Images
-
Verified Customer | Posted 03/23/2023The hydrogel formed a great three-dimensional matrix allowing Schwann cell growth and DRG neuron neurite outgrowth.
-
Verified Customer | Posted 02/21/2022Tube formation of Human Coronary Artery Endothelial cells imaged 6 hours after seeding.
-
Verified Customer | Posted 12/02/2020
-
Verified Customer | Posted 03/09/2020
-
Application: In vivo studyVerified Customer | Posted 01/13/2020
-
Application: In vivo studyReason for Rating: I used Cultrex for an xenograft tumor growth Invivo study. I mixed Breast Cancer cells and cultrex in an 1:1 ratio and injected into mice and followed tumor growth. Cultrex helped to hold the cells together and which helped with the tumor growth.Verified Customer | Posted 05/27/2019
-
Application: In vivo studyVerified Customer | Posted 05/27/2019
-
Application: Stem cell culture and maintenanceVerified Customer | Posted 02/08/2019
There are no reviews that match your criteria.
FAQs for Cultrex Reduced Growth Factor Basement Membrane Extract, PathClear
-
What kinds of tumor cells or biopsy specimens grow in vivo with Cultrex® BME?
Many cell lines and tumor biopsy specimens (usually cut into small fragments) have been found to grow in vivo when implanted with Cultrex® BME. These include melanoma, intestinal, prostate, breast, lung, renal, and liver cancers as well as the 3T3 mouse embryonic fibroblast cell line.
-
How does Cultrex® Basement Membrane Extract (BME) promote cell differentiation?
All epithelial and endothelial cells are in contact with a basement membrane matrix on at least one of their surfaces. By providing them with their natural matrix in vitro as a substrate for the cells that provides biological cues, the cells can assume a more physiological morphology (i.e. correct shape) and begin expression of cell-lineage specific proteins. Two-dimensional plastic surfaces, in combination with serum-containing media, cause cells to flatten, proliferate and de-differentiate.
-
How should Cultrex Basement Membrane Extract (BME) be stored and handled?
Cultrex BME should be stored at or below -20°C for optimal stability. Preparation of working aliquots is recommended. Cultrex BME should be thawed overnight on ice at 4°C, however long term storage at 4°C is not recommended. Freeze/thaw cycles and gel-liquid phase transitions should be avoided, since they can compromise product integrity.
-
What is the Tube Formation Assay?
The Tube Formation Assay is based on the ability of endothelial cells to form three-dimensional capillary-like tubular structures when cultured on a hydrogel of reconstituted basement membrane, such as Cultrex Basement Membrane Extract (BME).
-
What are the advantages of the Tube Formation Assay?
The Tube Formation Assay is the most widely used in vitro angiogenesis assay. The assay is rapid, inexpensive and quantifiable. It can be used to identify potentially angiogenic and anti-angiogenic factors, to determine endothelial cell phenotype, and to study pathways and mechanisms involved in angiogenesis. It can be performed in a high throughput mode to screen for a large number of compounds.
-
What cell types can be used in the Tube Formation Assay?
The Tube Formation Assay is specific for endothelial cells, either primary cells or immortalized cell lines. Only endothelial cells form capillary-like structures with a lumen inside. Other endothelial cell types form other structures.
-
What are the variables associated with the Tube Formation Assay?
The major variables associated with tube formation are composition of the Cultrex Basement Membrane Extract (BME) hydrogel, thickness of the hydrogel, cell density, composition of angiogenic factors in the assay medium, and assay period.
-
Which Cultrex Basement Membrane Extract (BME) should I use for the Tube Formation Assay?
Cultrex Reduced Growth Factor BME (RGF BME) is generally used for testing compounds that promote angiogenesis because formation of capillary-like structures (tubes) is significantly less compared to non-growth factor reduced varieties of Cultrex BME. The Cultrex In Vitro Angiogeneis Assay (Tube Formation) includes a qualified production lot of Cultrex RGF BME that exhibits reduced background tube formation in the absence of angiogenic factors.
-
How do I reduce spontaneous formation of tubular structures on Cultrex BME in the absence of angiogenic factors?
Primary endothelial cells, such as Human Umbilical Vein Endothelial Cells (HUVECs) form capillary-like structures in the absence of added angiogenic factors less often than immortalized endothelial cells. Generally, reducing the number of cells per cm2 plated onto Cultrex BME will result in less background or spontaneous tube formation. Titrate the number of cells and find optimal conditions for your specific cell line. When endothelial cells fully form capillary structures in response to angiogenic activators, but not in their absence, you may proceed.
-
Can cells grown in Basement Membrane Extract (BME), such as Catalog # 3433-005-01, be used in Flow Cytometry?
For preparation of a single cell suspension for applications such as FACS and re-culturing, digestion of the matrix and cell-cell bonds may be facilitated using enzymes such as Trypsin or Dispase. Our CellSperse, cat# 3450-048-05, is similar to Dispase, and can also be used for this purpose. However, some markers may be susceptible to degradation from CellSperse treatment. It is recommended to consult the literature for design of experiments for the particular cell type and markers of interest.