Human Transferrin Alexa Fluor® 594-conjugated Antibody
R&D Systems, part of Bio-Techne | Catalog # AF2914T
Key Product Details
Species Reactivity
Applications
Label
Antibody Source
Product Specifications
Immunogen
Specificity
Clonality
Host
Isotype
Applications for Human Transferrin Alexa Fluor® 594-conjugated Antibody
Western Blot
Formulation, Preparation, and Storage
Purification
Formulation
Shipping
Stability & Storage
Background: Holo-Transferrin
Human Transferrin (Tf) is a single chain, 80 kDa member of the anion-binding superfamily of proteins (1-5). It is a bilobed molecule that is the product of an ancient gene duplication event (1, 6). Transferrin is synthesized as a 698 amino acid (aa) precursor that is divided into a 19 aa signal sequence plus a 679 aa mature segment that contains 19 intrachain disulfide bonds. The crystal structure of Tf reveals a protein with two flanking 340 aa globular domains. Each are composed of a beta-sheet surrounded by series of alpha-helices (1, 7). The N- and C-terminal flanking regions (or domains) will bind ferric iron through the interaction of an obligate anion (usually bicarbonate) and four amino acids (His, Asp, and two Tyr) (7, 8). Apotransferrin (or iron-free) will initially bind one atom of iron at the C-terminus, and this is followed by subsequent iron binding by the N-terminus to form holotransferrin (diferric Tf) (8, 9). Through its C-terminal iron-binding domain, holotransferrin will interact with the type I Tf receptor (TfR) on the surface of cells where it is internalized into acidified endosomes. Iron dissociates from the Tf molecule within these endosomes, and is transported into the cytosol as ferrous iron. At physiological pH, iron-free Apotransferrin is not bound by TfR. But at acidic pH, such as exists in the endosome, Apotransferrin has considerable affinity for TfR. Thus, it remains bound to TfR and is recycled back to the cell surface where a neutral pH environment dissociates ligand from receptor. Each Tf molecule recycles 100-150 times during its lifetime (8-11). In addition to TfR, transferrin is reported to bind to cubulin, IGFBP3, microbial iron-binding proteins and liver-specific TfR2 (7, 12, 13, 14). Transferrin is variably glycosylated and the degree of sfialylation is suggestive of certain clinical conditions (15). Finally, Tf is highly allelic and the gene codominant, with many single aa changes noted. Three general forms are known, based on standard electrophoretic mobility. Fast Tf is known as transferrin B, slow transferrin is transferrin D, and the middle migrating transferrin is type/variant C, the most common (16, 17). Mature human TF is 73% aa identical to both mouse and rat Tf, and 68% and 71% aa identical to bovine and equine Tf, respectively.
Additional Holo-Transferrin Products
Product Specific Notices for Human Transferrin Alexa Fluor® 594-conjugated Antibody
This product is provided under an agreement between Life Technologies Corporation and R&D Systems, Inc, and the manufacture, use, sale or import of this product is subject to one or more US patents and corresponding non-US equivalents, owned by Life Technologies Corporation and its affiliates. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The sale of this product is expressly conditioned on the buyer not using the product or its components (1) in manufacturing; (2) to provide a service, information, or data to an unaffiliated third party for payment; (3) for therapeutic, diagnostic or prophylactic purposes; (4) to resell, sell, or otherwise transfer this product or its components to any third party, or for any other commercial purpose. Life Technologies Corporation will not assert a claim against the buyer of the infringement of the above patents based on the manufacture, use or sale of a commercial product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, Cell Analysis Business Unit, Business Development, 29851 Willow Creek Road, Eugene, OR 97402, Tel: (541) 465-8300. Fax: (541) 335-0354.
For research use only